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GUIDED CHOICES

The ethics of using algorithmic systems  
to shape philanthropic decision‑making

Rhodri Davies

1  Introduction

Discussion of the potential impact of artificial intelligence (AI) in the field of philanthropy has, to 
date, largely focused on three areas:

•	 The potential for harnessing machine learning (ML) and other tools to deliver new social and 
environmental interventions and how civil society organizations (CSOs) and philanthropic 
funders could play a role in realizing this potential;

•	 How AI might affect CSOs and philanthropic funders themselves through new opportunities to 
transform internal processes or through altering the nature of the broader financial and regula‑
tory systems within which they operate;

•	 The impact that AI may have on individuals and communities and what this might mean in 
terms of the need for new approaches or increased advocacy from funders and CSOs.

What has received far less attention is the question of how AI may affect the philanthropic choices 
made by individuals, about when, where, and how to give. This may reflect a broader lacuna in 
our knowledge since, as Susser notes, “for several years, scholars have (for good reason) been 
largely preoccupied with worries about the use of artificial intelligence and machine learning (AI/
ML) tools to make decisions about us,” but that “only recently has significant attention turned to 
a potentially more alarming problem: the use of AI/ML to influence our decision making” (Susser, 
2019). However, even if this is true across a broader set of domains, it is a particular problem for 
philanthropy, as individual choice plays a fundamental role in this context. Philanthropy’s inher‑
ently dual nature (Reich et al., 2016) means that we have to understand it at both a macro level – as 
a systemic mechanism for allocating and redistributing resources within society at a scale that 
positions it alongside both the state and the market – and a micro level, where it reflects the myriad 
choices of individuals to use their “voluntary action for the public good” (Payton & Moody 2008). 
Hence, the capacity of AI to affect how we make individual choices has profound implications for 
the future of philanthropy.

This chapter will look at these implications and how we might respond to them. It will consider 
the nature and role of choice in philanthropy, what we know about the capacity of AI to influence 
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and shape our individual choices, and what this suggests about the potential impact of AI on 
philanthropic choice and decision‑making. The implications will be considered across three key 
groups of actors that have the potential to employ AI to shape the decisions of potential donors, 
namely:

•	 General‑purpose search and recommendation services (i.e., search engines, conversational in‑
terfaces, text‑based generative AI tools);

•	 Giving platforms (i.e., dedicated donation/lending or crowdfunding platforms and commercial 
platforms that facilitate giving, such as payment providers or social media platforms);

•	 Individual cause‑based organizations (both formal and informal).

The chapter will highlight key ethical questions that emerge from considering the use of AI by 
each of these different actors and suggest changes in policy or practice that could help to address 
them.

2  Choice and philanthropy

Choice plays a fundamental role in philanthropy since our ability as individuals to decide whether 
and how to give away private assets for public benefit is one of the defining characteristics of 
philanthropy when set against other redistribution methods. However, there may be a danger that 
in making this assumption, we beg an important question about the nature of philanthropy since 
one of the fundamental philosophical questions about philanthropy throughout the ages has been 
whether it should be understood as a choice of duty. Is giving something you are entirely free to 
choose whether to do or not to do or are there moral or societal obligations of some kind that com‑
pel you to give (Martin, 1994; Schneewind, 1996)? To take one example of how this debate has 
evolved and the influence it has exerted, the predominant view among medieval Catholic scholars 
was that God determined the unequal distribution of wealth and resources within society and that 
part of his plan was for redistribution to take place through charity and almsgiving; so the “haves” 
had a duty to give to support the “have‑nots” (Roberts, 1996). The Enlightenment then saw a 
shift in thinking about the nature of property that caused views to diverge. For some, like Locke 
or Grotius, people had a “natural right” to ownership of property that they had amassed through 
their efforts, and it was up to them whether to choose to share it (Winfrey, 1981). For others, like 
Wollstonecraft and Kant, the unequal distribution of resources reflected the fact that society was 
unjust, and addressing this injustice demanded that those with wealth give back as a matter of duty 
rather than of choice. To the extent that this duty was a “perfect” one (i.e., a duty where it is clearly 
defined who the recipients are and what they are due), it was usually thought best discharged 
through taxation. However, many argued that philanthropy represents an additional “imperfect” 
duty, where the requirement to give is clear, but the exact nature of how the money must be given 
or to whom is not specified (Schneewind, 1996).

The extent to which philanthropic giving represents a choice or a duty remains a matter of de‑
bate even today. Those who prioritize individual liberty may feel that philanthropy must be seen 
entirely as a matter of choice (Nozick, 1974; Salmon, 2023). Others who place more emphasis on 
justice and the equitable distribution of resources will argue that we must acknowledge an element 
of duty when it comes to philanthropy, even if this impinges upon our individual freedom. For 
instance, the moral philosopher Peter Singer has argued that there is a moral duty on those with 
sufficient wealth to give some of it out to help people in extreme poverty (Singer, 1972, 2006). 
Cordelli (2016) goes further, arguing that “philanthropy should be understood foremost as a duty 
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of reparative justice” and that “affluent donors should, as a matter of moral duty, exercise no per‑
sonal discretion when deciding how to give and to whom. Indeed, they should regard their dona‑
tions as a way of returning to others what is rightfully theirs.” In this view, philanthropy becomes 
solely a matter of duty, and there is no room for choice.

A reasonable position between these two extremes is to allow that both duties and choices guide 
philanthropic giving. We pay taxes as part of an agreed social contract, but this does not necessar‑
ily fully discharge the duty we owe to others, so an element of duty may also apply to our giving. 
In part, this may be simply an imperfect duty to give in an unspecified way, but it may also be a 
more specific duty to give in a particular way or to particular causes (MacAskill, 2015; Singer, 
2015). (A duty that would obviously only have moral rather than legal force, of course.) Most peo‑
ple would stop short of claiming that all our philanthropy is driven by duty, however. They would 
allow the possibility of some giving that is supererogatory (i.e., above and beyond that which is 
demanded by duty). This portion of giving, at least, would be governed solely by choice in terms 
of our decision to give in the first place and in terms of what we choose to give to (Gewirth, 1987).

According to most current views, choice remains a vital ingredient of philanthropy. For this 
reason, it is unsurprising that a substantial body of research aims to shed light on the key factors 
affecting the choices we make when giving. Several literature reviews have attempted to survey 
this body of research and synthesize findings across it (Bekkers & Wiepking, 2011; Allen, 2018; 
Saeri et al., 2023), although they note that this presents challenges because the research is found 
across a wide range of disparate disciplines – including economics, political science, anthropol‑
ogy, neurology, psychology, and marketing – reflecting the inherently cross‑disciplinary nature of 
philanthropy as a field of study. Despite this variety, however, it is possible to identify common 
themes across research from different fields. Bekkers and Wiepking (2011), for instance, postulate 
eight mechanisms that drive giving based on their analysis of the available literature: (1) aware‑
ness of need; (2) solicitation; (3) costs and benefits; (4) altruism; (5) reputation; (6) psychological 
benefits; (7) values; (8) efficacy.

Within these broad categories, it is possible to identify a wide range of specific factors that may 
affect philanthropic decision‑making. Some relate to macro‑level considerations, such as religious 
and ethnic diversity among donors (Andreoni et al., 2016), social class and socioeconomic status 
(Piff et al., 2010), the impact of government funding (Andreoni & Payne, 2011), the presence of 
match funding (Karlan & List, 2007), the availability of “social information” on what other donors 
have given (Alpizar et al., 2008; Croson & Shang, 2008; Shang & Croson, 2009), or the effect 
of media coverage of disasters (Brown & Minty, 2008). Various studies have also attempted to 
identify relevant cultural factors by exploring children’s attitudes to giving and prosocial behavior, 
finding that children appear to have a natural inclination to act pro‑socially even from a very young 
age (Zahn‑Waxler et al., 1992; Warneken & Tomasello, 2006), that younger children are less prone 
to “free‑riding” behavior than adults (Harbaugh & Krause, 2000), and that as children get older, 
they are more likely to give to someone when they believe that the other person might reciprocate 
their generosity (Sebastián‑Enesco & Warneken, 2015).

Many micro‑level factors affect decisions made about giving at an individual level. Some of 
these are relatively unsurprising, such as whether the person soliciting donations is a member 
of their peer group (Meer, 2011), whether the person soliciting makes an audible request or not 
(Andreoni et al., 2017), the level of information the donor has about the cause being fundraised 
for (Eckel et al., 2007), whether that information concerns an identifiable individual or is in the 
form of statistical evidence (Jenni & Loewenstein, 1997; Slovic, 2007), and what kind of infor‑
mation the donor is given about the performance of the organization asking for funds (Butera & 
Horn, 2020). Other factors are perhaps less obvious, such as the influence of our body chemistry: 
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a number of studies have found, for instance, that the release of oxytocin results in a greater will‑
ingness to give (Zak et al., 2007; Barraza et al., 2011), while others have found that the brain’s 
dopamine reward center may respond similarly when we give to how it does when we receive 
other kinds of rewards (Moll et al., 2006). There are also more esoteric factors that studies have 
found may have a bearing on our willingness to give and the choices we make: for instance, being 
exposed to “awe‑inspiring” content (Rudd et al., 2012), having a prior conversation that primes 
you with the notion of a God or Supreme Being (Shariff & Norenzayan, 2007), thinking about 
death (Jonas et al., 2002), listening to “chill‑inducing music” (Fukui & Toyoshima, 2014), listen‑
ing to music with “prosocial lyrics” (Greitemeyer, 2009), or being in the presence of images of 
eyes (Ekström, 2012; Sparks & Barclay, 2013; Fathi et al., 2014).

As more and more of us give online − either through dedicated nonprofit platforms or, increas‑
ingly, through commercial social media or payment platforms that have added giving functionality to 
their offering – the nature of philanthropic choice and decision‑making is changing rapidly. For one 
thing, the range of options available to us is far more significant because we are no longer constrained 
by physical proximity: many platforms enable individuals to give to groups and causes worldwide 
without ever needing to contact potential recipients or fundraisers. We are also less constrained by a 
reliance on formal organizations, as a large volume of online giving goes to informal groups, grass‑
roots social movements, or individuals (Bernholz, 2021). But perhaps the most profound impact 
of the shift toward giving online is that the digital environment offers new opportunities to design 
“choice architectures,” that is, how choices are presented to us so they are tailored and responsive 
to our personal preferences and can be highly targeted to produce desired outcomes. Knowledge of 
the individual − and often unconscious − factors that shape our giving decisions will be an important 
competitive advantage when harnessing such approaches’ potential. Some have already questioned 
whether this raises ethical concerns and whether it is appropriate to exploit insights about our sub‑
conscious behavioral drives to “nudge” us toward specific actions in this way when it comes to phi‑
lanthropy and other prosocial behavior (Schulz et al., 2017; Ruehle et al., 2021). Such concerns are 
only likely to become more acute as the impact of AI is felt more widely, as we shall see.

3  Choice and AI

AI already significantly impacts how choices and decisions are made in a wide range of fields. As 
noted at the start of this chapter, there has been a particular emphasis on how algorithmic systems 
are used to make decisions about us, with a growing body of literature examining the opportunities 
this presents – in terms of bringing new capabilities and efficiencies across the public, private, and 
nonprofit sectors (Wirtz et al., 2019; Kanter & Fine, 2022) – as well as the challenges it brings, 
such as new risks of “machine bias” against marginalized groups (Wachter‑Boettcher, 2017; Eu‑
banks, 2018; Noble, 2018) and concerns about insufficient transparency and accountability (de 
Fine Licht & de Fine Licht, 2020; Loi & Spielkamp, 2021). In this chapter, however, our primary 
focus is not on how AI may be used to make decisions about us but how it might affect our deci‑
sions as individuals when it comes to philanthropic giving. To that end, we will consider three key 
areas:

•	 The use of algorithms to determine responses to requests for information and how this shapes 
our choices and decision‑making;

•	 The capacity of AI to enable personalization and “hyper‑nudging,” to drive particular actions 
and outcomes;

•	 The use of AI‑generated content to prompt emotional responses and thus drive behavior.
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3.1  AI and information provision

Our online world experience is heavily shaped by algorithms (Schmidt, 2021). While it is theoreti‑
cally possible to navigate the internet without using intermediaries, in reality, the vast majority of 
web traffic comes via search engines (BrightEdge, 2019). More recently, social media platforms 
and conversational interfaces (either text‑based, such as OpenAI’s ChatGPT, or voice‑based, such 
as Apple’s Siri or Amazon’s Alexa) have also evolved to fill a similar role in many users’ online 
experiences (Huang, 2022; Perez, 2022). In both cases, the information we are provided is deter‑
mined algorithmically in one of two main ways. The first is the reactive provision of information 
in response to a request, where a range of suitable answers may be algorithmically determined and 
then presented to the user either in the form of a ranked list (as in the case of a traditional search 
algorithm, such as that used by Google) or in the form of a single answer or small handful of an‑
swers (as tends to be the case with conversational interfaces). The second way algorithms may be 
used is for the proactive provision of information, where the user has not made an explicit request, 
but instead, suggestions or recommendations for content they may be interested in are provided 
to them based on data about their known interests, preferences, or online behavior. Recommender 
algorithms, which typify this latter approach, are at the heart of social media platforms such as 
TikTok, X, and Facebook, as well as content platforms like Spotify, Netflix, and YouTube, all of 
which seek to provide a steady stream of enticing content for us to click through to next to keep us 
on the platform for as long as possible (Schrage, 2020; Roy & Dutta, 2022).

When trying to understand how algorithms can shape our choices across both of these contexts, 
there are at least three things we need to consider: what information is provided (i.e., what the 
algorithm determines as the “correct” or “best” answer to a query, or how it decides what to recom‑
mend to us); how the information is provided (i.e., whether it comes in the form of a single answer 
or a list, and whether we can refine the information presented to us); and finally our perception of 
the information (i.e., whether we are aware that it represents the result of an algorithmic process).

The most basic question we must ask is: what is the nature of the algorithm that has produced 
the information we are presented with (with the immediate corollary questions: “Who designed 
it?” and “What are their motivations?”)? Unfortunately, here we encounter an issue that will prove 
to cut across almost all our considerations, namely lack of transparency. In the case of many of the 
algorithms that shape our online experience – such as Google’s ranking algorithm, TikTok’s video 
recommender algorithm, or YouTube’s content algorithm – the question of how they work largely 
remains a mystery. This is partly because these algorithms are closely guarded proprietary secrets. 
Still, it is also because many of them are by design “black boxes,” whose inner workings are de‑
liberately opaque and not always fully comprehensible even to those who created them (Pasquale, 
2015; von Eschenbach, 2021). Scholars and campaigners have increasingly called for this situation 
to be remedied by introducing greater openness to the use of algorithms. Initially, this was focused 
on the idea that we need to make algorithmic systems more transparent, but more recently, the fo‑
cus has shifted toward making algorithms “explainable,” since transparency by itself is no longer 
felt by many experts to be a useful goal, as for most users being able to see the inner workings of an 
algorithm doesn’t further their understanding of how it works (Mittelstadt et al., 2019; Rai, 2020).

How information is presented to us is also important. In particular, the emergence of conver‑
sational user interfaces (CUIs) as alternatives to traditional search engines to find information is 
potentially very significant (Liao et al., 2020). The design of CUIs may vary considerably, from 
basic chatbots that provide only limited responses through systems that can hold natural language 
conversations at a level that may be functionally indistinguishable from a human being; however, 
one feature that most of them have in common is that information is no longer presented in the 
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form of a complete ranked list that can be inspected visually, but in the form of an “answer” (or 
small set of answers) to a question we have posed (Zamani et al., 2023). In practical terms, this 
may make it harder to identify and compensate for any biases. There are already concerns that 
traditional search engines perpetuate biases of various kinds (Espín‑Noboa et al., 2022; Maillé 
et al., 2022), but the challenge may be more significant when it comes to information delivered 
through CUIs; both because of how we interpret the status of the information and because it is 
no longer possible to compensate for bias simply by looking further down the list of pages of 
results, as we might do with a traditional search engine. For these reasons, among others, some 
have questioned whether CUIs should be considered viable alternatives to conventional search 
engines (Gurdeniz & Hosanagar, 2023).

There are also deeper issues here. For one thing, we tend to see language as a marker of intel‑
ligence (Mahowald et al., 2023), so the more that automated systems can respond to our requests 
for information in credible natural language, the more likely we are to accept what they tell us 
and the less likely we are to assess that information critically. Another challenge is that the con‑
versational nature of interfaces may reduce the visibility of the underlying technology, that is, our 
awareness that a process of digital intermediation and algorithmic determination of information is 
taking place. As scholars have noted, the potential invisibility of technology is a significant factor 
when it comes to practical and ethical concerns about how AI may shape individual choices, both 
because we are rendered far more susceptible to manipulation through technology when we are 
not even aware that this technology is being used (Van den Eede, 2011; Susser, 2017), and because 
the threat to autonomy is significantly higher (André et al., 2018; Vaassen, 2022; Bartmann, 2023).

The increasing invisibility of algorithmic systems and our willingness to accept the information 
they present us with less critically has led some scholars to claim that the distinction highlighted 
earlier in this chapter – between reactive information provision and proactive recommendation – is 
no longer that meaningful. For instance, Zamani et al. “do not make a strong distinction between 
search and recommendation tasks” because they see them as “closely related tasks that are becom‑
ing more closely related as time passes” and argue that in many cases, the same task can often be 
characterized as either search or recommendation depending on the device or interface being used 
and the context in which the task is taking place (Zamani et al., 2023). This blurring of boundaries 
between searches for information that we undertake actively and recommendations that we receive 
passively clearly has implications for the degree of autonomy we retain as users (Bartmann, 2023). 
However, we also need to bear in mind that the increasing reliance on algorithmically determined 
recommendations is primarily driven by our demands as consumers for highly tailored and per‑
sonalized experiences (Arora, 2021). Should we, therefore, view this less as an unprovoked assault 
on our autonomy and more as a Faustian pact that we have entered into, in which we sacrifice 
autonomy for convenience?

3.2  Personalization, choice architecture, and hyper‑nudging

The information provided to us is an important determinant of our choices, but it is by no means 
the only one. A range of factors relating to how options are presented to us also significantly affect 
our decisions.

Thaler and Sunstein (2009) coined the term “choice architecture” to describe this range of fac‑
tors (and “choice architect” to refer to anyone who has control over them) (2009). Advertisers and 
marketers have long known that our subconscious motivations and drivers can be manipulated to 
sell us things (Samuel, 2010). Still, since the publication of Thaler and Sunstein’s work, there has 
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also been significant interest in how the design of choice architectures can be used in the public 
and nonprofit sectors to “nudge” people toward desirable prosocial actions (Behavioural Insights 
Team, 2013; Schulz et al., 2017; Capraro et al., 2019). (A “nudge” is defined by Thaler and Sun‑
stein as “any aspect of choice architecture that predictably alters people’s behavior without forbid‑
ding any options or significantly changing their economic incentives.”)

Many early experiments with choice architecture focused on using the design of physical 
spaces or interactions to influence people’s actions. However, it is in the digital world that choice 
architecture and nudging have really come into their own, as in this context, it becomes possible 
to tailor choice architectures to individuals in a way that is not feasible in the physical world 
(Thomas et al., 2013; Weinmann et al., 2016). AI has now added a significant further dimension, 
as the combination of big data and algorithmic processes makes it possible not only to person‑
alize nudges but to adapt them iteratively in real time in response to user behavior. The legal 
scholar Karen Yeung has coined the term “hyper‑nudge” for this phenomenon (Yeung, 2017) and 
argues that:

unlike the static Nudges popularized by Thaler and Sunstein (2009), such as placing the 
salad in front of the lasagne to encourage healthy eating, Big Data analytic nudges are 
extremely powerful and potent due to their networked, continuously updated, dynamic and 
pervasive nature (hence “hypernudge”).

There is an existing body of critical thought about the ethics of nudge approaches (Bovens, 2009; 
Hobbs, 2017; Ruehle et al., 2021), but hyper‑nudges bring new challenges of their own. Allowing 
autonomous systems to act as choice architects may, for instance, raise significant issues regarding 
transparency, responsibility, and accountability (Mills & Sætra, 2022). There are also questions 
about whether the iterative and adaptive nature of hyper‑nudges makes it harder for us to avoid 
them than traditional nudges, and whether they present a more significant threat to our autonomy 
(André et al., 2018; Mills, 2022).

3.3  Generative AI and emotive content

Generative AI is a term for a broad class of models or algorithms that produce new content – such 
as text, photos, illustrations, video, audio, or code – based on large sets of suitable training data. 
We are already seeing generative AI being used in efforts to shape our individual choices. This 
will likely become even more commonplace in the future since the ability to generate audio and 
visual content that seems genuine – while in fact, being carefully calibrated to convey specific 
messages or emotions – represents a hugely powerful new tool for inducing beliefs and influenc‑
ing actions (Sætra, 2023). We will undoubtedly see an increase in malicious attempts to spread 
misinformation and disinformation to induce false beliefs; there have been widespread concerns, 
for instance, about the rise of “deepfakes” – synthetic media that have been digitally manipulated 
to replace one person’s likeness convincingly with another – and their potential deployment in 
the context of elections and other political events (Chesney & Citron, 2018; Diakopoulos & 
Johnson, 2021; Pashentsev, 2023). Not all applications of generative AI will be deliberately mali‑
cious, of course, but some scholars argue that even the well‑intentioned use of technology such 
as deepfakes is potentially harmful because it undermines our notions of authenticity in the online 
environment and thereby exacerbates the problematic erosion of trust (Hancock & Bailenson, 
2021; de Ruiter, 2021).
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4  AI and philanthropic choices

To understand how general considerations about how AI could affect individual choices apply in 
the specific context of philanthropy, we will consider three key actors that play a role in philan‑
thropic choice‑making in the digital environment:

•	 General‑purpose search and recommendation services;
•	 Giving platforms;
•	 Individual cause‑based organizations.

We will consider each actor’s motivations for wanting to shape our philanthropic choices, what 
this means in terms of their likely adoption of AI tools, and the potential ethical raised.

4.1  General‑purpose search and recommendation services

Many websites, platforms, and interfaces providing information to users – either in the form of 
reactive responses to requests or proactive recommendations – are not explicitly designed with 
philanthropy or the nonprofit sector in mind. The paradigm example is traditional search engines, 
but this category also includes any social media, content platforms, or conversational user inter‑
faces that allow users to search for general information or to receive recommendations that could 
influence choices about giving. The primary motivation, in this case, is satisfying user demand for 
information – whether that is explicit (e.g., a search request) or implicit (e.g., a perceived openness 
to receiving a recommendation) – to ensure that users remain on a platform or return to a service 
in future. It is also possible that the company operating the search or recommendation service has 
its own corporate social purpose, which may be an additional factor in the motivation to provide 
information that can shape philanthropic choices.

In the case of providing information in response to a user request, it is unlikely the provider will 
exert any influence over the initial decision to give since this has most likely already been taken. 
However, there is substantial potential for influencing where and how the gift is made. A user may 
be seeking objective information – for instance, on which nonprofit organizations operate in a par‑
ticular geographical location – or that user may be looking for more subjective information – for 
instance, on the “most pressing need” or which nonprofit organizations are “most effective.” In 
both cases, it is important to interrogate the nature of the algorithms used to determine the informa‑
tion on offer and the goals and motivations of those designing and operating them. As highlighted 
earlier in this chapter, this is particularly important in those cases where responses to requests for 
information are presented in the form of a single answer or small selection of answers rather than 
a list, as in these cases, our ability to counteract the choice architecture imposed by the algorithm 
is much more limited.

In the case of proactive recommendations or unprompted information designed to act as a 
nudge, the user need not have taken any prior decision to make a philanthropic gift, so it would 
be possible to influence not only where and how they give but their choice to do so in the first 
place. In this situation, it would be important to examine what motivation the search provider or 
platform had for encouraging or nudging prosocial behavior in the form of giving. For instance, if 
it reflects a broader corporate social purpose, is that purpose explicit and known to the user? Is the 
aim merely to encourage giving in a generic sense, or is the information presented in such a way 
as to promote giving to specific types of causes or according to a specific philanthropic ideology?
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In previous cases where generic service providers have decided to offer some form of giving 
functionality, such as the ability to make donations when using ATMs or paying at a checkout, 
concerns have been expressed about the limitations of the options available to users and the role 
the service provider plays in determining them (Caulfield et al., 2022). In the case of ATM giving 
or checkout donations, it is a relatively straightforward matter for users to bypass the nudge. In 
the case of nudges applied online, however, as we have already seen, the reduced visibility of the 
technology may lead to users being less aware that a choice architect is attempting to shape their 
behavior – which might make the nudge more effective but also brings a greater risk of eroding 
users’ autonomy (Lv & Huang, 2022). In cases where hyper‑nudges are implemented, the iterative 
and adaptive nature of the algorithms raises a further challenge in terms of an increased “burden of 
avoidance” (Susser, 2019), since it also becomes far more difficult for users to bypass the nudge.

4.2  Giving platforms

Many platforms are specifically dedicated to providing information and offering transactional ser‑
vices that encourage and facilitate giving. Some of these are themselves nonprofits or charitable 
organizations, while others may have for‑profit organizational structures but with a stated social 
purpose. Some focus primarily on traditional philanthropic donations, but others offer opportuni‑
ties that go beyond this, such as the ability to make loans or to contribute to crowdfunding cam‑
paigns in support of organizations or individuals (Lilly Family School of Philanthropy, 2023).

The majority of giving platforms aim (either stated or implicit) to try to increase levels of 
generosity by making it easier and more appealing for people to give. Some, however, may em‑
phasize increasing the quality of giving rather than the quantity, and to that end, may focus on 
promoting a particular view of effectiveness or impact. Even where platforms profess to be “cause 
neutral” (i.e., not promoting any one cause above others), it is essential to recognize that the range 
of options they present to users does not represent the entire domain of potential gift recipients 
since all platforms have criteria that limit what users can give to. In some cases, these criteria are 
explicit – such as limitations on the geographic location of recipients or requirements that they 
must have specific legal or organizational structures – but increasingly, there are also concerns 
that platforms take additional decisions to remove particular organizations or cause areas that may 
meet legal requirements, but which have been deemed unsuitable for some reason. As more and 
more giving takes place online, the concern is that platforms play the de facto role of arbiters of 
the acceptable boundaries of civil society simply because of the criteria they impose about what 
their users can or cannot give to, but that this power comes with little in the way of transparency 
or accountability (Carlman, 2020; Wade, 2022).

In many cases, users will engage with a giving platform having already made the initial deci‑
sion to give, so any use of AI will be more about informing and shaping their choices about which 
causes to give to and what methods to use. The key questions then are about how algorithms are 
being applied and what their purpose or goal is. One vital dimension here is visibility: are users 
aware that an algorithm is being used to determine the information they are presented with? In 
some cases, the involvement of AI may be obvious: for instance, where a chatbot is clearly and 
openly being used to respond to search requests or to provide advice and recommendations. In 
other cases, however, the algorithmic processes may be hidden within the platform’s infrastruc‑
ture, so users may not be aware of their existence. This will have a significant bearing on the 
degree to which we have concerns about whether the individual autonomy of users is being un‑
dermined. It may also have practical implications, as there is some evidence that people are less 
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likely to donate when they feel as though their ability to choose has been limited, even when they 
are presented with options that appeal to them (Lv & Huang, 2022).

The visibility of any algorithms used to determine the information provided by a philanthropic 
giving platform is an important consideration, but even more important is the question of what 
those algorithms are designed to do. In the case of giving platforms that position themselves as 
neutral intermediaries, presumably, the goal is to maximize user satisfaction − in much the same 
way as the general‑purpose search interfaces considered above. What does it mean in practice 
to “maximize user satisfaction” when it comes to philanthropic giving? We might assume that it 
means presenting users with information on organizations and causes likely to appeal to them, 
thereby increasing the likelihood that they will make repeat donations to those same organizations 
and causes or to others in the future. However, there are reasons to be cautious about adopting this 
as an acceptable goal. For one thing, some would question whether maximizing donor satisfaction 
should be seen as the sole or primary aim of fundraising or philanthropy advice and would argue 
that the ability to challenge donors – by questioning their assumptions or pushing them outside of 
their comfort zone − is an important part of both professions (Beeston & Breeze, 2023). In recent 
years, there has also been growing debate in the fundraising field over whether “donor‑centric” 
or “community‑centric” models are preferable (MacQuillin, 2022). In the context of using AI to 
shape giving choices, the adoption of donor satisfaction as the primary objective may prove par‑
ticularly problematic due to the recognized tendency of ML systems to exhibit “algorithmic bias” 
where algorithms trained on data sets that contain existing statistical biases come to reflect and 
entrench those biases over time. To design an algorithm that could provide giving choices and rec‑
ommendations that were likely to satisfy donors, you would need to consider information such as 
individual user’s past donations and the giving behavior of others who share relevant demographic 
features. However, that data reflects the existing limitations of the philanthropic marketplace: 
such as the fact that large organizations receive the lion’s share of donations (National Council for 
Voluntary Organisations [NCVO], 2023), the fact that “unpopular” or “unfashionable” causes a 
struggle to raise funds (Body & Breeze, 2016), or the fact that the system as a whole demonstrates 
significant biases in terms of race and gender (Dorsey et al., 2020; Damm et al., 2023). The con‑
cern would be that an algorithm designed to satisfy donors and trained on this data would lead to 
many of these known challenges becoming exacerbated, with smaller organizations, unpopular 
causes, and organizations led by women or people of color becoming increasingly marginalized in 
favor of well‑known nonprofit brands and “safe” causes.

Suppose concerns such as these lead us to conclude that donor satisfaction should not be the 
sole criterion when designing philanthropy algorithms. In that case the obvious question is: what 
other goals should we specify? We might suggest that the aim should be to maximize effective‑
ness, by ensuring that resources are targeted toward areas of greatest need, or ensuring they are 
directed toward interventions with the highest level of impact (according to some preferred meas‑
ure). However, this raises both practical and theoretical challenges. In practical terms, we do not 
have the current data that would allow us to say where the need is most acute or where the impact 
is most significant, even if we wanted to. And in theoretical terms, it is not apparent that we could 
define either of these things meaningfully even if we did have all the required data. Identifying 
specific needs as “most acute” or specific interventions as having the “greatest impact” would 
require us to have measures of need and impact that can be applied objectively across cause areas, 
and many would argue that this is impractical and undesirable. Some approaches to giving, such 
as Effective Altruism (EA), try to address this challenge head‑on by promoting the idea of a utili‑
tarian, cause‑agnostic single measure of value that can be used as a benchmark across all philan‑
thropy (MacAskill, 2015). These are far from universally accepted, however, and EA in particular 
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has attracted heavy criticism from many for being unrealistically normative, for applying an overly 
simplistic framework to complex social problems, and for being an ideology that favors easily 
measurable interventions within the current status quo over harder‑to‑measure campaigning and 
advocacy that aims at fundamental reform of systems and structures that are the root cause of so‑
cietal challenges (Srinivasan, 2015; Gabriel, 2017; Crary, 2023). It would certainly be possible to 
use the principles of EA as the basis for a cause‑agnostic algorithm that could provide information 
and recommendations to people to maximize overall Expected Value in a utilitarian sense but to do 
so would reflect a clear bias toward one particular, and strongly ideological, view of philanthropy.

Since it is not possible to find a purely objective way to measure impact or need (or at least one 
on which there is majority consensus), any additional criteria we apply in designing the goal of 
a philanthropy algorithm must be subjective to some extent, so their legitimacy will derive from 
whatever authority we appeal to justify their adoption. In some cases, a platform may rely on its 
own authority if it has decided to take its own stance on what constitutes “good” giving and apply 
these to the designs of any algorithms it is using, but this will obviously leave it open to challenges. 
In other cases, a platform may choose to appeal to an external authority, such as the United Nations 
Sustainable Development Goals (UNSDGs). Clearly, this still does not provide a purely objective 
goal for giving, and the UNSDGs have their fair share of critics (Swain, 2018). Still, as a globally 
agreed framework for prioritizing needs and focusing actions, they also have a relatively high de‑
gree of legitimacy (and certainly more than a single giving platform would have by itself), so they 
may provide an appealing basis for setting the goals of a philanthropy algorithm.

Once a goal or set of criteria has been determined that can act as the basis for designing a phi‑
lanthropy algorithm, there may still be a further challenge to ensure that the algorithm remains 
aligned with the creator’s original intention. At one time, the only option available for those at‑
tempting to create AI systems would have been to map out all of the possible steps in a process 
and then program those directly into an algorithm (this model is sometimes colloquially known as 
“Good Old Fashioned AI” or GOFAI [Boden, 2014]). This presented a significant limiting factor 
because it requires that we understand the underlying nature of all the capabilities we are trying to 
emulate and capture these in symbolic form, but there are many functions, such as natural language 
conversation or image recognition, that are seen as important aspects of intelligence and which 
humans can usually perform easily, but which we are not able to explain fully. This is one of the 
main reasons that the emergence of machine learning approaches as an alternative to GOFAI has 
led to such enormous growth and evolution in AI: because designing algorithms that can “learn” 
by going through a process of repeated iteration and self‑modification to improve performance 
concerning a specified measure allows us to create systems that can approximate (or even surpass) 
human performance in certain tasks without us having to specify all of the steps involved in per‑
forming that task (Smith, 2019). In cases where machine learning algorithms match or exceed hu‑
man performance, one of the things that has been noted is that they often do so by solving problems 
in ways that never would have occurred to a human and perhaps aren’t even fully understandable 
to us. A growing body of literature has explored this phenomenon in various contexts; for instance, 
algorithms that are designed to play video games, where it has been found that they often end up 
achieving their set goal of scoring highly or winning by engaging in “specification gaming” (i.e., 
looking for loopholes or weaknesses in how the task has been specified or in the video game’s 
design) rather than by playing within the confines of the game in the way that a human would (Kra‑
kovna et al., 2020; Lehman et al., 2020). This makes it clear that our goals and values in design‑
ing ML algorithms are hugely important. If we may have little or no control over how algorithms 
evolve to achieve a particular result, it becomes absolutely vital that we can stipulate clearly what 
our desired goal is and what the acceptable parameters are when it comes to achieving it.
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The idea of Value Alignment has come to prominence through the work of philosopher Nick 
Bostrom, who argues that one of the key challenges of AI development is what he has christened 
the Value Alignment Problem (VAP), i.e., ensuring that highly autonomous AI systems are de‑
signed to ensure that their goals and behaviors remain aligned with human value throughout their 
operation (Bostrom, 2014). Bostrom’s work focuses on Artificial General Intelligence (AGI) and 
Superintelligence, i.e., AI systems that are capable of matching or surpassing human‑level intelli‑
gence concerning any task, which, at this point, remains hypothetical. To demonstrate the potential 
risks of value misalignment, he created a thought experiment known as The Paperclip Maximizer, 
in which a highly intelligent AGI is given the simple task of producing as many paperclips as 
possible (Bostrom, 2003). The danger, Bostrom argues, is that without additional specification of 
constraints, the AGI may choose to maximize its performance of this task in ways that radically 
diverge from our original intent: perhaps it will decide, for instance, to wipe out the human race 
because it believes that human beings pose a threat (because they may order it to cease paperclip 
production at some point in the future) or simply because we represent valuable stores of raw 
materials that the AGI believes would be better used for making more paperclips. The Value Align‑
ment Problem doesn’t just apply to Superintelligent systems or AGI, however. It is also relevant 
to domain‑specific AI systems of this kind we have today. And it is not limited to trivial examples 
of algorithms bending the rules win at computer games either: as AI systems are increasingly 
deployed by governments and companies in a wide range of contexts, they have the potential to 
affect many areas of our lives, so ensuring that they remain aligned with our values and intentions 
is crucial (Korinek & Balwit, 2022).

In the context of philanthropy algorithms being deployed by giving platforms, as in many other 
areas, the challenge will be to find ways of giving AI systems sufficient freedom and autonomy to 
bring benefits in the form of increased effectiveness and efficiency while minimizing the risk of 
negative unintended consequences. There is a growing body of literature focused on “AI safety” 
that proposes ways of achieving this balance by designing safeguards that enable suitable human 
oversight and corrective acts when the risk of unintended consequences do occur (Leslie, 2019; 
Houben et al., 2022), and it is important that those seeking to create philanthropy algorithms draw 
on this literature.

4.3  Cause‑based organizations

The final context in which AI may impact philanthropic giving choices is that of individual 
cause‑based organizations (e.g., charities, social enterprises, etc.). In these cases, the use of AI 
is unlikely to involve the design of philanthropy algorithms in the sense discussed above since 
the organization’s interest (presumably) is not providing information or recommendations that 
maximize user satisfaction or facilitate giving in a generic sense but in maximizing their support. 
Cause‑based organizations may, of course, still benefit from algorithms used by giving platforms 
or general‑purpose information providers prioritizing them in search results or including them in 
recommendations. In this situation, do these cause‑based organizations, as beneficiaries, bear any 
responsibility for concerns about algorithmic bias, loss of autonomy for users, or lack of transpar‑
ency? Since we assume they neither designed the algorithms nor controlled their operation, these 
cause‑based organizations are not directly responsible. However, if they are aware of the issues or 
have even engaged in practices that might exacerbate them (such as paying to be ranked higher in 
search results or participating in hyper‑nudging initiatives where they stand to receive donations), 
then it might be argued that they are complicit to some extent and therefore bear a share of any 
moral responsibility.
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Cause‑based organizations may also face direct ethical issues if they use generative AI tools 
to produce content as part of their fundraising. Charities and nonprofits have always used emo‑
tive imagery and storytelling to appeal to people via the heart and the head, which has sometimes 
drawn criticism. In the context of international aid and development, for instance, there is a 
long‑standing debate over whether depictions of aid recipients are patronizing and overly nega‑
tive and whether this reflects problematic attitudes of “white saviorism” (Pieterse, 1992; Bhati, 
2021). Similarly, disability rights campaigners have, at times, been vocally critical of the depic‑
tion of disabled people as objects of pity by nonprofit organizations (Longmore, 2015). These 
concerns will apply equally to content created using generative AI. In fact, they may even be 
exacerbated, as there are concerns that current AI image‑generation tools demonstrate worrying 
levels of racial and gender bias, so their use may lead to the further perpetuation of problematic 
stereotypes (Lamensch, 2023; Small, 2023; Thomas & Thomson, 2023; Turk, 2023).

The capabilities of generative AI will bring other challenges, too. The fact that it is now pos‑
sible to generate photo‑realistic images or deepfake videos that are indistinguishable from real 
photos or video has led to concerns being raised about the potential impact this might have on 
notions of trust and authenticity (de Ruiter, 2021). For cause‑based organizations, the risk of 
using generative AI content is that if done badly, it may have a significant negative impact on 
the perceptions of supporters and the wider public. In 2019, the UK charity Malaria No More 
UK successfully used deepfake technology to produce footage of the former footballer David 
Beckham reading out an appeal in nine different languages. It received broadly positive cover‑
age (Davies, 2019). In early 2023, however, Amnesty International was heavily criticized for 
using AI‑generated imagery to promote a report on police brutality in Colombia (Taylor, 2023). 
In the context of fundraising, there may also be reasons for caution when it comes to embracing 
generative AI: at least one study, for instance, has found that people are less likely to donate in 
response to a charitable giving advert if they become aware that AI‑generated imagery has been 
used (Arango et al., 2023).

There are also wider ethical questions as to whether generative AI is inherently parasitic since 
it requires vast data sets of images, photographs, or text on which algorithms can be trained, 
which are only possible through the past efforts of human writers, artists, and creatives. Critics 
have accused companies at the forefront of the generative AI revolution of engaging in deliberate, 
large‑scale copyright infringement to build their products, and this seems set to become a major is‑
sue for generative AI in the coming years, with several legal challenges already mounted and more 
likely to follow (Appel et al., 2023; Bearne, 2023). Again, this is not an issue for which charities or 
nonprofits bear direct responsibility, as they have no control over the development of commercial 
generative AI tools. They do, however, have a choice as to whether they use these tools or not. 
While broad concerns about copyright infringement and intellectual property rights are unlikely to 
be sufficient grounds by themselves for shunning generative AI, when added to the other ethical 
issues outlined already, it may be seen by some charities and nonprofits as sufficient grounds to 
question whether the use of generative AI is appropriate at all at this stage.

5  Conclusion

In this chapter, we have considered a range of ways in which AI could be used to shape individual 
choices and how these apply to different contexts in which decisions about philanthropic giving 
might be made. In doing so, we have identified several potential ethical concerns that funders and 
nonprofits need to be aware of as they contemplate using AI tools in this way. These ethical con‑
cerns and some of the key questions we need to ask as a result are summarized below:
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Legitimacy, accountability, and transparency

•	 Is it clear to users that an algorithm determines the information or recommendations offered 
to them?

•	 Who designed the algorithm?
•	 What goal did they have in mind in designing the algorithm?
•	 Is this goal clear to the user?
•	 Where does their legitimacy of the goal derive from?
•	 Can the user challenge the algorithm or hold the designer to account?

Undermining agency

•	 Does the use of AI to create personalized choice architectures or hyper‑nudges undermine the 
agency of individual donors?

•	 Is this an acceptable price to pay for encouraging prosocial behavior?

Bias

•	 Does using algorithms to provide information and recommendations that can shape philan‑
thropic choice introduce the risk of bias against certain kinds of organizations or causes?

•	 Does the use of Generative AI bring the risk of bias (e.g., for race, gender, etc.), which could 
exacerbate existing concerns about how recipients of philanthropic funding are portrayed?

Erosion of authenticity and trust

•	 Does the use of generative AI to produce content (e.g., photographic imagery, video, text) for 
use in fundraising and campaigning bring the risk of contributing to an erosion of the notions 
of authenticity and trust in the online environment?

Intellectual property rights and training data

•	 Are current AI tools dependent on data sets that take advantage of prior human effort without 
suitable compensation or respect for intellectual property rights? Are nonprofit organizations 
that use these tools ethically compromised as a result?

Having identified these ethical issues, the question is what actions can be taken to address them. 
There is no single answer, but we can identify a range of current and future actions that can be 
taken by the various actors involved. Commercial platforms need to recognize the power they have 
to shape individual giving choices. They should seek to work with the nonprofit sector to minimize 
any potential harms that come from applying algorithmic processes to the provision of information 
and recommendations. Dedicated giving platforms are more likely to have pre‑existing relation‑
ships with the nonprofit sector but should still recognize that their power as gatekeepers will in‑
crease as more and more giving takes places online and that they therefore have a responsibility to 
ensure that any applications of algorithms take into account the risks of undermining the agency of 
donors, or introducing biases that will adversely affect certain types of organizations or cause ar‑
eas. Nonprofits and civil society organizations also need to be aware of the potential risks inherent 
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in their own use of AI tools – and ensure they put in place measures to mitigate against them. This 
may seem daunting for organizations that are often resource‑starved, which is why philanthropic 
funders also have a vital role in providing them with the infrastructure and support they need to 
engage with issues of AI ethics. This could be done through relationships with individual grantees 
or by creating new pooled funds (such as the European Artificial Intelligence and Society Fund). 
Philanthropic funders can also play a valuable role in broader efforts to ensure the ethical and 
responsible use of AI, by engaging in research and advocacy that enables the perspectives and 
insights of civil society organizations they support to be brought into the debates.
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